
Privilege-Escalation Vulnerability Discovery for Large-scale RPC
Services: Principle, Design, and Deployment

A work based on operational experiences

Zhuotao Liu1†, Hao Zhao2†, Sainan Li1, Qi Li1, Tao Wei2, Yu Wang2

1 Tsinghua University, 2 Ant Group

Background and Problem Statement

RPC System Overviews

Ø One of world’s largest RPC deployments at Ant Group

Ø Hundreds of financial services / One billion users worldwide / hundreds of billions of RPC requests every day

Background

RPC System Overviews

Ø One of world’s largest RPC deployments

Ø Hundreds of financial services / One billion users worldwide / hundreds of billions of RPC requests every day

RPC security is crucial due to our large user base

Privilege-escalation vulnerabilities = catastrophic sensitive data losses!

Background

Academic Proposals

Ø Request-response analysis

Ø Probing-based solution to learn the system

Ø Static and/or dynamic program analysis

Ø Others

Old-School Engineering Solutions

Ø A “Software Quality Assurance” (SQA) team to
detect the RPC vulnerabilities

Ø Cultivating test users to mimic the real user base

Ø Replaying manually engineered RPCs

RPC System Overviews

Ø One of world’s largest RPC deployments

Ø Hundreds of financial services / One billion users worldwide / hundreds of billions of RPC requests every day

RPC security is crucial due to our large user base

Privilege-escalation vulnerabilities = catastrophic sensitive data losses!

Why “Reintenting the Wheels”

Characteristics for RPC System at Ant Group

Ø C1 - Dynamic and Unknown RPC Processing Logic:

• The desired RPC handling logic is unknown a priori (complexity)

• The desired handling logic often depends on user attributes (dynamism)

Prior Arts / Solutions Adoption Challenges for our Systems

Request-reponse analysis

Probing-based solution to learn the system C1

Static and/or dynamic program analysis

Manually Engineered RPC Requests

Why “Reintenting the Wheels”

Characteristics for RPC System at Ant Group

Ø C1 – Dynamic and Unknown RPC Processing Logic

Ø C2 – Private RPC Responses:

• Not allowed to parse the RPC responses for non-testing users for privacy concerns

Prior Arts / Solutions Adoption Challenges for our Systems

Request-reponse analysis C2

Probing-based solution to learn the system C1

Static and/or dynamic program analysis

Manually Engineered RPC Requests

Why “Reintenting the Wheels”

Characteristics for RPC System at Ant Group
Ø C1 – Dynamic and Unknown RPC Processing Logic

Ø C2 – Private RPC Responses

Ø C3 – Deeply customized RPC protocols

• The constructions of our RPC protocols are highly heterogeneous due to various business cases

• It becomes increasingly difficult to construct valid RPCs

Prior Arts / Solutions Adoption Challenges for our Systems

Request-reponse analysis C2

Probing-based solution to learn the system C1, C3

Static and/or dynamic program analysis

Manually Engineered RPC Requests C3

Why “Reintenting the Wheels”

Characteristics for RPC System at Ant Group
Ø C1 – Dynamic and Unknown RPC Processing Logic

Ø C2 – Private RPC Responses

Ø C3 – Deeply customized RPC protocols

Ø C4 – Extremely large code footprint

• Each RPC may involves many “system-services” backed by different code bases maintained by different teams

Prior Arts / Solutions Adoption Challenges for our Systems

Request-reponse analysis C2

Probing-based solution to learn the system C1, C3

Static and/or dynamic program analysis C4

Manually Engineered RPC Requests C3

Our Design Principle

The “Live Replay” Principle

Ø Vulnerability detection should be driven by live and authentic RPC requests in production to fundamentally
eliminate the limitations of artificially engineered testing RPCs

Our Design Principle

The “Live Replay” Principle

Ø Vulnerability detection should be driven by live and authentic RPC requests in production to fundamentally
eliminate the limitations of artificially engineered testing RPCs

A Strawman Design

Ø Step One: Sample a live RPC in production

Ø Step Two: Replace the user identifier in the original PRC to create a hybrid request

Ø Step Three: Replay the hybrid request and compare the whether the two requests are handled similarly

Our Design Principle

The “Live Replay” Principle

Ø Vulnerability detection should be driven by live and authentic RPC calls in production to fundamentally eliminate
the limitations of artificially engineered testing RPCs

A Strawman Design

Ø Step One: Sample a live RPC in production

Ø Step Two: Replace the user identifier with a companion user in the original PRC to create a hybrid request

Ø Step Three: Replay the hybrid request and compare the whether the two requests are handled similarly

Problems / Challenges
Ø Lacking the prerequisites of analyzing live RPC requests (recall the privacy requirement)

Ø RPC is not the right granularity for vulnerability discovery since each RPC has multiple legitimate processing logics
(recall the complexity and dynamism of RPC handling)

Ø It is not possible to find a perfect companion user for hybrid request (recall that user attributes impact RPC
handling)

PAIR Design

A Privacy-Preserving and Universal Model for RPC Handling

Ø Modeling the RPC handling logic as a behavioral dependency graph (BDG): a graph of ”system-services” invoked
when handling a RPC

Ø Privacy-Preserving (System intrinsic info) + Universal (No Protocol Parsing) + Extensible (System info granularity)

Ø Build a tracing system to construct BDGs

PAIR Design

RPClet Construction and Ranking

Ø Introduce RPClet: one specific handling logic (in form of BDG) for a RPC with certain payloads

• Learn RPClets: statistical analysis of BDGs of the same RPC to profile the RPClets of the RPC

Ø RPClet Entropy analysis to decide “High-risk” RPCs

PAIR Design

Empirical Vulnerability Labeling

Ø Absorb the “sad fact” that it is impossible to find a perfect companion user for each sampled RPClet

Ø Propose to provide data-driven insights into the safety of RPClet by analyzing how our system terminates the
hybrid request

• Intuitively, the BDG of the hybrid request should be terminated by security check nodes

The hybrid request’s BDG is a subset
of the original RPClet

The hybrid request’s BDG has
additional termination nodes not
appeared in the original RPClet

The hybrid request’s BDG is a
superset of the original RPClet

PAIR Design

Hidden Security-Check
Nodes

Class A RPCs: at least one of the leaf
nodes implement security check logic.
Class B RPCs: represents the
opposite, meaning high probability
of privilege escalation.

Empirical Vulnerability Labeling
Ø Absorb the “sad fact” that it is impossible to find a perfect companion user for each sampled RPClet

Ø Propose to provide data-driven insights into the safety of RPClet by analyzing how our system terminates the
hybrid request

• Intuitively, the BDG of the hybrid request should be terminated by security check nodes

• Problems: only a small number of nodes are explicitly tagged as “security-check” nodes, while many other nodes
implement security checks internally

PAIR Deployment

System Deployment

Ø Production deployment for over three years

Ø We collected data over a course of five days
for evaluations

Some Results

Total 133 Vulnerabilities

High false positives to trade for zero false
negative (by design)!

Query RPCs are more likely to suffer from
privilege escalation attacks than write RPCs.

Thank You!
Contact: zhuotaoliu@tsinghua.edu.cn

