HyperService: Interoperability and Programmability
Across Heterogeneous Blockchains

Make Web3.0 Connected!

Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao, Bihan Wen, Yih-Chun Hu

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

(CASE WESTERN RESERVE

% , EST. 1826

g B k 1 sl NANYANG
| ' TECHNOLOGICAL

/* i

N L

/f"x\\ \}/}‘, ’

=2 2\ / ‘

oz . =a

& S/

& N y Beijing University of Posts and Telecommunications
ETTIE

UNIVERSITY OF CALIFORNIA

Blockchain Proliferation

2.3K

ethereum

Total # of Projects Listed

Payment Network Smart Contract Platform on CoinMarketCap

“Make Blockchains Great”

Blockchain Y

Blockchain X Privacy
Security _ .

e
=

Scalability =53
Decentralization ===§ —

bl

sl
Wiy

L

Blockchain Z

A N
()

i —» _'_ = — . i - =
T e = - - = . S ——
- e - N

Atomic Token Swap is NOT the complete scope

Ato nic
Token §wap

Blockchain Y

Blockchain X |n a world deluged with isolated blockchains,
interoperability is power.

Blockchain Z

Blockchain interoperability is complete only with programmability ...

Passive Distributed Ledgers > Programmable State Machine

~
NN A
> S—
— b
s> ~— = ,‘:J’//
84 @public =~ . . . o
85 @payable ¢ genuinePrice = StrlkePQEe \
86 def CashSettle(shareCount™\yint256, genuinePrice: wei_value):
87 assert self.remainingFund >™MEN=STAKE |
. 88 assert self.optionBuyers[msg.sender].valid \ o’/
Blockchain X 89 assert not self.optionBuyers[msg.sender].executed — A .
. 90
pragma solidity 0.4.22; o
91 if genuinePrice > self.strikePrice: BlOCkChaln Z
contract Broker { function CashSettle(unit shareCount, uint genuinePrice)
uint constant public MAX_OWNER_COUNT = 50; public
uint constant public MAX_VALUE_PROPOSAL_COUNT = 5; optionAvaiable

1

;7/?he authorative ouput provided by this Broker contracts.

uint public StrikePrice; StrikePrice = $10

require(optionBuyers [msg.sender].valid && !optionBuye
// Only execute the option if it is profitable.
e ——— ' if (genuinePrice > strikePrice) {

Challenge I: A virtualization layer to abstract away heterogeneity

Cross-chain dApps: how to uniformly define operations among
heterogeneous contracts and accounts ...

Consensus Efficiency Transactions
& Finality Not-Synchronized

A S D S e

Blockchain X BlockchainY Blockchaln V4

Contract Languages

Challenge Il: Cryptography protocols to realize cross-chain dApps

Cross-chain dApps N\ Contain more complex operations than just
in the era of Web3.0 token transfers
(Transaction Graph |« Transactions on different Blockchains;

(11) (12~ Transactions in specific order;
dApp Executables @ « Downstream transactions depend on state

> 4
(13) J resulted from upstream transactions;

Our Proposal — HyperService

* A developer-facing programming framework
ﬁ - Universal State Model: a blockchain-neutral model to describe dApps

- HyperService Language: a high-level language to program dApps

s _

A blockchaln -facing cryptography protocol to reallze dApps on- cham

— |

.‘E> - Network Status Blockchain: a decentralized trust anchor

- Insurance Smart Contract a trust- free code arbltrator

A universal platform for developing and executing dApps
across heterogenous Blockchains

Programming Framework — Universal State Model

M= 1{8&,P, €6} = {Entities, Operations, Constraints}

pragma solidity 0.4.22;

‘Blockchain X

__".‘ ,’-_’,/

contract Broker {
uint constant public MAX_OWNER_COUNT = 50;
uint constant public MAX_VALUE_PROPOSAL_COUNT = 5;

L/=Tié authorative ouput provided by this Broker contracts.

Entities Attributes uint public StrikePrice;) X::Broker.StrikePrice
' 34 @public
account address, balance, unit 35 @payable Y::Option.CashSettle(uint256, wei_value)
contract state variablesLL interfacesﬂ source 86 def CashSettle(shareCount: uint256, |genuinePrice: wei_value):
’ 87 assert self.remainingFund > MIN_STAKE

88 assert self.optionBuyers[msg.sender].valid
89 assert not self.optionBuyers[msg.sender].executed

00 ‘Blockchain Y

91 if genuinePrice > self.strikePrice: S —

) S

Programming Framework — Universal State Model

M= 1{8&,P, €6} = {Entities, Operations, Constraints}

pragma solidity 0.4.22;

—— — S — E——

o Operations: Computatio

‘Blockchain X"

contract Broker { ' - ____

uint constant public MAX_OWNER_COUNT = 50;
uint constant public MAX_VALUE_PROPOSAL_COUNT = 5;

~ performed over several entities

L/=Tié authorative ouput provided by this Broker contracts.

Operations Attributes uint public StrikePrice;) X::Broker.StrikePrice
payment from, to, value, exchange rate 24 @public
55 @payable Y::Option.CashSettle(uint256, wei_value)
Invocation mterface, parametersﬂ, iInvoker 36 def CashSettle(shareCount: uint256, lgenuinePrice: wei_value):
87 assert self.remainingFund > MIN_STAKE
88 assert self.optionBuyers[msg.sender].valid
l\ I o o o . 89 assert not self.optionBuyers[msg.sender].executed '
n example invocation operation: oo ‘Blockchain Y
91 if genuinePrice > self.strikePrice: S —

Y::Option.CashSettle(10, X::Broker.StrikePrice)

Programming Framework — Universal State Model

M= 1{8E,P, 6} = {Entities, Operations, Constraints }

Entities: objects extracted Operations: Computgt—io | Constraints: dependeni
___among operations |

\\
|

. from underlying blockchains N performed over several entities |

Entities Attributes Operations Attributes Dependency
account address, balance, unit payment from, to, value, exchange rate precondition

contract | state variables[] interfaces[], source | invocation |interface, parameters[], invoker deadline

HyperService Language (HSL): A high-level programming language

Import the source code of contracts written in different languages.
import (“broker.sol”, “option.vy”, “option.go”)

Entity definition.

Attributes of a contract entity are implicit from its source code.
account al = ChainX::Account(0x7019..., 100, xcoin)

account a2 = ChainY::Account(0x47al..., 0, ycoin)

account a3 = ChainZ::Account(0x61a2..., 50, zcoin)

contract ¢1 = ChainX::Broker(0Oxbba7...)

~ account & contract: de‘f entities P
extracted from underlying blockchains];

\o x ~] =) (%7 — W) -

contract c2 = ChainY ::Option(0x917f...)
contract ¢3 = ChainZ::Option(0Oxefed...)

Operation definition.

—_
o

i
[

payment & invocation: —

—
V)

op opl invocation c1.GetStrikePrice() using al

operations among entities

— — —_— — -

—
‘v

op op2 payment 50 xcoin from al to a2 with 1 xcoin as 0.5 ycoin

I
—

op op3 invocation c2.CashSettle(10, ¢1.StrikePrice) using a2

—
157

op op4 invocation c3.CashSettle(5, c1.StrikePrice) using a3

— ==

—
(=)

Dependency definition.

[
~J

opl before op2, op4; op3 after op2

i
=]

op1 deadline 10 blocks; op2, op3 deadline default; op4 deadline 20 mins

Figure 2: A cross-chain Option dApp written in HSL.

Unified Type | Solidity Vyper Go
Boolean bool bool bool
Numeric Int, unit Int128, decimal, .../ Iint, float, ...

Array array, bytes| array, bytes | array, slice

Programming Framework Core -- HSL Program Compilation

’~

:' N\] - . N " _—
1| Solidity Vyper Go E HSI
i | Contract | | Contract | | Confract | *** | Program
1L ! :
. % S T
| Extract state variables and - . P — f ~ —
g . . Multi-language HSL Lemteams Read and parse HSL programs
interfaces from imported contracts Front-End l : -

" Extract {E, O, D} from
- HSL program

~ Unify different
| contract languages

—

e—

................................

HSL Validation and Compilation E

Entity] [Operation] [Dependency} [Transaction] :
|

1

. Compatibility: type check

» Verifiability: state variables|smee

R e .- .

Validation Validation Validation Compilation

 Feasibility: no dep-loop A

..

HSL program

[Transaction Dependency Graph]

| executables

Figure 3: Workflow of HSL Compilation.

Transaction Dependency Graph (TDG) — HSL Program Executables

* Resulting state of T1is used subsequently
. A state proof needs to be collected after T1

{ is finalized.

__

 Each vertex defines:

- - Full information for computing a blockchain-
executable transaction
- Metadata to ensure correct execution

|+ Edges define the transaction order

e — S ———— e e =

(

Transaction T1 on ChainX:
from: al.address
to: c1.address
Meta:
data: cl.getStrikePrice
<amt. dst>: <01 ncion, Ox1...>

Sstate_proof: collect from NSB~ 13

—— = == s T T

Transaction T2 on ChainX:
from: al.address
to: VES.relayX.address
Meta:
value: 50 xcoin

<amt, dst>: <25 ncion, 0x2...>
deadline: 4 NSB blocks

'

4
Transaction T4 on ChainY:

from: a2.address
to: c2.address

Meta:
data: c2.CashSelttle(10, c1.StrikePrice)
<aml, dst>: <0.1 ncion, 0x4...>
value_proof: T1.mela.state_proof

\

Iransaction T3 on ChainY:
from: VES.relayY.address
fo: a2.address
Meta:
value: 25 ycoin
<amt, dst>: <5 ncion, 0x3...>
deadline: 6 NSB blocks

HyperService Architecture

Developer-facing Programming Framework

: Transaction Dependency Graph
*@
> 4
e |

Universal Inter-Blockchain Protocol

Universal Inter-Blockchain Protocol (UIP) Overview

%

|
|
|
] Q
"-.~~ ‘
4 L}
’ [}
' ' »
(] ‘
‘.
A) ¢'
e |

» A protocol spoken by all parties to co-execute cross-chain dApps
 Fully decentralized: no authorities and no mutual trust among parties

e ————e—————————— m— — — —_— = = —— — — __ — = — =

» Provable security properties

N - Correctness assurance, financial atomicity, and accountability
| _ _ _ — — i e ———

———— = = == —=— —

— B — — - _ — ———

» Network Status Blockchain: a decentralized trust anchor

 Insurance Smart Contract: a trust-free code arbitrator

[l

——— ———— —— e e . S

UIP Security Properties

TDG is realized
as desired

Accountability

Correctness
Guarantee

|
|
|

|

« dApp execution either finishes correctly or being financially reverted

« Regardless of at which stage the execution fails, ibehavd

B e

parties are held accountable for the failure

|
1!
|

|

Ik

— = — —— _ _ = — — ==)

: | iolockchains are modeled with bounded transcTo inalilaten,

Security properties of dApps executed by UIP
(Proved in UC-Framework)

Financial
Atomicity

» Consolidate transactions and state from underlying blockchains
 Provide unified representations for transaction status and state in

[form of verifiable Merkle proofs

NSB Design - —

PrevHash Block Number: N Hash Block Number: N + 1

/ Status Merkle Tree

StatusRoot ActionRoot e« e« e | StatusRoot

Blockchain X Blockchain X
l‘" AN
. BlockiD: 2012 BlockiD: 2019
Action Merkle Tree ,
StateRoot: 0x1.. StateRoot: 0x27..
TxRoot: Oxf... t: Oxe...
Flgure 5: The archltecture of NSB blocks.

I — — NSB: Provide unified and

o Proof of Actlons (PoAs) aIIow partles to construct proofs to | o ,
‘ ﬂ objective views on the

| certify their actions taken durmg executlons | ,
T — e status of dApp executions

Insurance Smart Contract (ISC)

Merkle Proofs

Blockchain X

« ! | TxRoot: Rx

The NSB

|
StateRoot: Ry | ..,

StatusRoot

/
N
-

TxHash: 0x3...

e

~

Blockchain X

~_

BlockID: 2019

StateRoot: Ry

TxRoot: Rx

Decision Logic

if CorrectExecution:

Pay service fee

else:
Revert effective fund
Enforce accountability

Implementation and Source Code Release (as of March 2020)

 Incorporate Ethereum and a permissioned blockchain built on Tendermint
- Different consensus efficiency and transaction finality definition
- Different contract languages: Solidity VS. Go

60K

* Three categories of cross-chain dApps
- Financial derivative, asset movement and federated computing

Lines of Code
« Released source code: https://github.com/HyperService-Consortium

Demo: End-to-end executions on HyperService

1. Invoke E::Broker.ComputeStrikePrice()
2. Invoke T::Option.cash _settle(E::Broker.StrikePrice)
3. Invoke E::Option.CashSettle(E::Broker.StrikePrice)

Broker Contract HYPe rService |

——Y-

Option Contract

A 4 4
MEM
. 4
|||||

Option Contract

Ethereum Tendermint based blockchain

HyperService: A universal platform for developing and
executing dApps across heterogenous Blockchains

Q&A
Thank You
hyperservice.team@gmail.com

