
HyperService: Interoperability and Programmability
Across Heterogeneous Blockchains

Make Web3.0 Connected!

Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao, Bihan Wen, Yih-Chun Hu

Blockchain Proliferation

Payment Network Smart Contract Platform

2.3K

Total # of Projects Listed
on CoinMarketCap

“Make Blockchains Great”

Sharding &
Layer-II Channels

Blockchain Y
Privacy &

Program Analysis

Blockchain Z

Blockchain X

Consensus Protocols

Decentralization
Scalability

Security
Privacy

Blockchain Y

Blockchain Z

Blockchain X In a world deluged with isolated blockchains,
interoperability is power.

Atomic
Token Swap

Atomic Token Swap is NOT the complete scope

Blockchain Y

Blockchain Z

Blockchain X

Passive Distributed Ledgers

StrikePrice = $10

genuinePrice = StrikePrice

Blockchain interoperability is complete only with programmability …

Programmable State Machine

Challenge I: A virtualization layer to abstract away heterogeneity

Cross-chain dApps: how to uniformly define operations among
heterogeneous contracts and accounts …

Contract Languages
Consensus Efficiency

& Finality
Transactions

Not-Synchronized

Blockchain X Blockchain Y Blockchain Z

Challenge II: Cryptography protocols to realize cross-chain dApps

Cross-chain dApps
in the era of Web3.0

dApp Executables

Transaction Graph

T1

T3

T2

T4

……

How to realize transactions via decentralized protocols?

T1T3 T4T2

• Transactions on different Blockchains;
• Transactions in specific order;
• Downstream transactions depend on state
 resulted from upstream transactions;

Contain more complex operations than just
token transfers

Our Proposal — HyperService

A universal platform for developing and executing dApps
across heterogenous Blockchains

• A developer-facing programming framework
- Universal State Model: a blockchain-neutral model to describe dApps

- HyperService Language: a high-level language to program dApps

• A blockchain-facing cryptography protocol to realize dApps on-chain

- Network Status Blockchain: a decentralized trust anchor

- Insurance Smart Contract: a trust-free code arbitrator

Programming Framework — Universal State Model

Entities Attributes

account address, balance, unit

contract state variables[], interfaces[], source

ℳ = {ℰ, 𝒫, 𝒞} = {Entities, Operations, Constraints}

Entities: objects extracted
from underlying blockchains

Blockchain X

Blockchain Y

X::Broker.StrikePrice

Y::Option.CashSettle(uint256, wei_value)

Programming Framework — Universal State Model

ℳ = {ℰ, 𝒫, 𝒞} = {Entities, Operations, Constraints}

Blockchain X

Blockchain Y

X::Broker.StrikePrice

Y::Option.CashSettle(uint256, wei_value)

Operations: computation
performed over several entities

Operations Attributes

payment from, to, value, exchange rate

invocation interface, parameters[], invoker

An example invocation operation:
Y::Option.CashSettle(10, X::Broker.StrikePrice)

Programming Framework — Universal State Model

ℳ = {ℰ, 𝒫, 𝒞} = {Entities, Operations, Constraints}

Entities: objects extracted
from underlying blockchains

Operations: computation
performed over several entities

Entities Attributes Operations Attributes

account address, balance, unit payment from, to, value, exchange rate

contract state variables[], interfaces[], source invocation interface, parameters[], invoker

Constraints: dependencies
among operations

Dependency

precondition

deadline

HyperService Language (HSL): A high-level programming language

import: include the source code of all
contracts defined in the HSL program

account & contract: defining entities
extracted from underlying blockchains

payment & invocation: defining
operations among entities

before, after & deadline: defining
dependencies among operations

Programming Framework Core -- HSL Program Compilation

Extract state variables and
interfaces from imported contracts

Read and parse HSL programs

Unify different
contract languages

Extract {E, O, D} from
HSL program

Unified Type Solidity Vyper Go
Boolean bool bool bool
Numeric int, unit int128, decimal, … int, float, …

Array array, bytes array, bytes array, slice

• Compatibility: type check
• Verifiability: state variables
• Feasibility: no dep-loop

HSL program
executables

Transaction Dependency Graph (TDG) — HSL Program Executables

• Each vertex defines:
- Full information for computing a blockchain-

executable transaction

- Metadata to ensure correct execution

• Edges define the transaction order

• Resulting state of T1 is used subsequently
• A state proof needs to be collected after T1

is finalized.

HyperService Architecture

Developer-facing Programming Framework

Transaction Dependency Graph

T1

T3

T2

T4

……

T1T3 T4T2

Universal Inter-Blockchain Protocol

Universal Inter-Blockchain Protocol (UIP) Overview

• A protocol spoken by all parties to co-execute cross-chain dApps
• Fully decentralized: no authorities and no mutual trust among parties

• Provable security properties
- Correctness assurance, financial atomicity, and accountability

• Network Status Blockchain: a decentralized trust anchor
• Insurance Smart Contract: a trust-free code arbitrator

UIP Security Properties

Security properties of dApps executed by UIP
(Proved in UC-Framework)

• dApp execution either finishes correctly or being financially reverted

• Regardless of at which stage the execution fails, the misbehaved
parties are held accountable for the failure

• If blockchains are modeled with bounded transaction finality latency,
dApps are guaranteed to finish correctly if all parties are honest

TDG is realized
as desired

Financial
Atomicity

Accountability

Correctness
Guarantee

NSB: Provide unified and
objective views on the

status of dApp executions

• Consolidate transactions and state from underlying blockchains
• Provide unified representations for transaction status and state in

form of verifiable Merkle proofs

• Proof of Actions (PoAs): allow parties to construct proofs to
certify their actions taken during executions

Status Merkle Tree

Action Merkle Tree

NSB Design

Insurance Smart Contract (ISC)

Merkle Proofs

TxRoot: Rx StateRoot: Ry

TxHash: 0x3…

Value A

StatusRoot

Blockchain X

BlockID: 2019

StateRoot: Ry

TxRoot: RxValue B

Blockchain X The NSB

… … … … if CorrectExecution:
 Pay service fee
else:
 Revert effective fund
 Enforce accountability

Decision Logic

Implementation and Source Code Release (as of March 2020)

60K

Lines of Code

• Incorporate Ethereum and a permissioned blockchain built on Tendermint

- Different consensus efficiency and transaction finality definition
- Different contract languages: Solidity VS. Go

• Three categories of cross-chain dApps
- Financial derivative, asset movement and federated computing

• Released source code: https://github.com/HyperService-Consortium

Demo: End-to-end executions on HyperService

Ethereum Tendermint based blockchain

1. Invoke E::Broker.ComputeStrikePrice()

2. Invoke T::Option.cash_settle(E::Broker.StrikePrice)

3. Invoke E::Option.CashSettle(E::Broker.StrikePrice)

Broker Contract

Option Contract

Option Contract

HyperService

HyperService: A universal platform for developing and
executing dApps across heterogenous Blockchains

Q & A
Thank You

hyperservice.team@gmail.com

